Simulating the evolution of signal transduction pathways.

نویسندگان

  • Orkun S Soyer
  • Thomas Pfeiffer
  • Sebastian Bonhoeffer
چکیده

We use a generic model of a network of proteins that can activate or deactivate each other to explore the emergence and evolution of signal transduction networks and to gain a basic understanding of their general properties. Starting with a set of non-interacting proteins, we evolve a signal transduction network by random mutation and selection to fulfill a complex biological task. In order to validate this approach we base selection on a fitness function that captures the essential features of chemotactic behavior as seen in bacteria. We find that a system of as few as three proteins can evolve into a network mediating chemotaxis-like behavior by acting as a "derivative sensor". Furthermore, we find that the dynamics and topology of such networks show many similarities to the natural chemotaxis pathway, that the response magnitude can increase with increasing network size and that network behavior shows robustness towards variations in some of the internal parameters. We conclude that simulating the evolution of signal transduction networks to mediate a certain behavior may be a promising approach for understanding the general properties of the natural pathway for that behavior.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy

Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt-signaling (or the Wnt/β-Catenin signal transduction) leads to a variety of human diseas...

متن کامل

JAK-STAT pathway and JAK inhibitors: a primer for dermatologists

Background: All cellular events depend upon the DNA synthesis and gene expression involving complex interplay between ligands such as interleukins and interferons, with various cell membrane receptors. These ligand-receptors interactions transmit signals within the cell via numerous signal transduction pathways to affect gene expression. Janus kinase/signal transducer and activator of transcrip...

متن کامل

The Jak-Stat Signaling Pathway of Interferons System: Snapshots

Interferons (IFNs) are a family of small regulatory glycoproteins that play a central role in the defense against viral infections. Although IFNs have been initially discovered as antiviral factors, today they are known as an integral part of the cytokine network that affect a wide range of biological processes. IFNs exert their pleiotropic effects through their multisubunit cell surface recept...

متن کامل

The Expression of Signal Regulatory Protein-alpha in Normal and Osteoarthritic Human Articular Cartilage and Its Involvement in Chondrocyte Mechano-transduction Response

Signal regulatory proteins (SIRP) belong to immunoglobulin super family (IgSF) and relate to integrin signaling cascades. It has been shown that SIRPa is expressed in a variety of cells including myeloid cells and neurons. In the present study the expression of this IgSF member in articular chondrocytes was investigated. Methods: Using a panel of anti-SIRPalpha antibodies, immunohistochemistry...

متن کامل

Study of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks

Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of theoretical biology

دوره 241 2  شماره 

صفحات  -

تاریخ انتشار 2006